SPEC

Spec No.	TQ3C-8EAF0-E1DEY71-00
Date	September 9, 2016

TYPE: TCG062HVLQAVNN-GN20

< 6.2 inch HVGA transmissive color TFT with LED backlight and constant current circuit for LED backlight>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Interface signals
- 8. Input timing characteristics
- 9. Backlight characteristics
- 10. Lot number identification
- 11. Warranty
- 12. Precautions for use
- 13. Reliability test data
- 14. Outline drawing

KYOCERA DISPLAY CORPORATION

This specification is subject to change without notice. Consult Kyocera before ordering.

Original	Designed by: Engineering dept.			Confirmed by: QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
September 9, 2016	M. Koyama	Y. Yomazaki	G Matsumoto	O. Sato	1. Hamars

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	-

Revision record

				VISIOII I		1	
Date				Engineering of		Confirmed by	
		Prepar	red	Checked	Approved	Checked	Approved
Rev. No.	Date	Page			Descripti	ons	
		1 1					

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	1

1. Application

This document defines the specification of TCG062HVLQAVNN-GN20 (RoHS Compliant)

2. Construction and outline

LCD : Transmissive color dot matrix type TFT

Backlight system : LED

Polarizer : Glare treatment

Additional circuit : Power supply (3.3V input)

(with constant current circuit for LED Backlight)

3. Mechanical specifications

Item	Specification	
Outline dimensions 1)	173(W)×70(H)×6.7(D)	
Active area	147.84(W)×55.44(H) (15.8cm/6.2 inch(Diagonal))	
Effective viewing area	ve viewing area 149.8(W)×57.4(H)	
Dot format	640×(B,G,R)(W)×240(H)	dot
Dot pitch	0.077(W)×0.231(H)	mm
Base color 2)	Normally Black	
Mass	115	g

- 1) Projection not included. Please refer to outline for details.
- 2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	2

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

	Item	Symbol	Min.	Max.	Unit
Supply voltage for LCD drive		$V_{ m DD}$	0	4.0	V
Supply voltage	$V_{\mathrm{IN}}\mathrm{B}$	0	6.0	V	
	RxINi+, RxINi- 1) 2)	V_{I1}	-0.3	$V_{ m DD}$	V
	RxCK IN+, RxCK IN- 2)	V_{I2}	-0.3	$V_{ m DD}$	V
Input signal	SC	V_{I3}	-0.3	$V_{ m DD}$	V
voltage	BLEN (Backlight ON-OFF)	V_{I4}	0	$V_{\mathrm{IN}}\mathrm{B}$	V
	VBRT (Brightness adjust voltage)	V_{I5}	0	V _{IN} B	V

- 1) i=0,1,2
- 2) V_{DD} must be supplied correctly within the range described in 5-1.

4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	1)	Тор	-20	70	$^{\circ}\mathrm{C}$
Storage temperature	2)	T_{STO}	-30	80	°C
Operating humidity	3)	Нор	10	4)	%RH
Storage humidity	3)	Нѕто	10	4)	%RH
Vibration		-	5)	5)	-
Shock		-	6)	6)	-

- 1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.
- 2) Temp. = -30° C < 48h, Temp. = 80° C < 168h

Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.

(Please refer to "Precautions for Use" for details.)

- 3) Non-condensing
- 4) Temp. ≤40°C, 85%RH Max.

Temp. \geq 40°C, Absolute humidity shall be less than 85%RH at 40°C.

5)

Frequency	10∼55 Hz	Acceleration value
Vibration width	0.15mm	$(0.3\sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

 $2\ hours\ in\ each\ direction\ X,\ Y,\ Z\ (6\ hours\ total)$

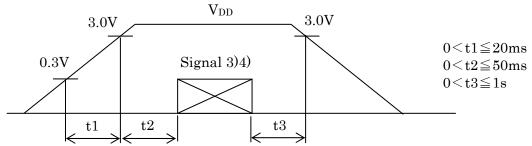
 $\hbox{EIAJ ED-}2531$

6) Acceleration: 490 m/s², Pulse width: 11 ms

3 times in each direction: $\pm X$, $\pm Y$, $\pm Z$

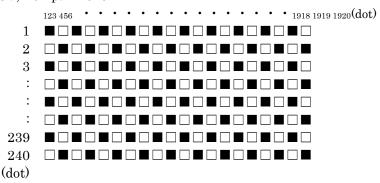
EIAJ ED-2531

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	3

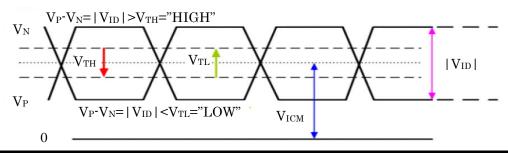

5. Electrical characteristics

5-1. LCD

Temp. = $-20 \sim 70$ °C


Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Supply voltage	1)	$V_{ m DD}$	-	3.0	3.3	3.6	V
Current consumption		${ m I}_{ m DD}$	2)	ı	80	105	mA
Permissive input ripple voltage	е	V_{RP}	$V_{DD}=3.3V$	ı	•	100	mVp-p
1		V_{IL}	"Low" level	0	•	$0.2~\mathrm{V}_\mathrm{DD}$	V
Input signal voltage	3)	V_{IH}	"High" level	$0.8~\mathrm{V_{DD}}$	•	$ m V_{DD}$	V
Invest leals assured	3)	${ m I}_{ m OL}$	$V_{I3}=0V$	-10	-	10	μ A
Input leak current		I_{OH}	$V_{I3}=3.3V$	-	-	350	μ A
Differential input voltage	4)	$ V_{\mathrm{ID}} $	-	100	-	600	mV
Differential input	4)	V_{TL}	"Low" level	-100	1	-	mV
threshold voltage	4)	V_{TH}	"High" level	ı	•	100	mV
LVDS Common mode voltage	4)	$V_{\rm ICM}$	-	$ V_{\rm ID} /2$	1.2	2.4- V _{ID} /2	V
Terminator		R_1	-	-	100	-	Ω

1) V_{DD}-turn-on conditions


2) Display pattern:

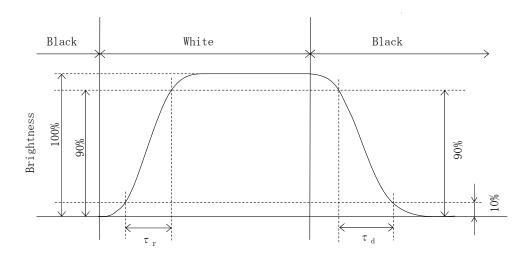
$$V_{DD} = 3.3V$$
, Temp. = 25°C

3) Input signal: SC

4) Input signal: RxIN2+, RxIN2-, RxIN1+, RxIN1-, RxIN0+, RxIN0-, RxCKIN+, RxCKIN-

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	4

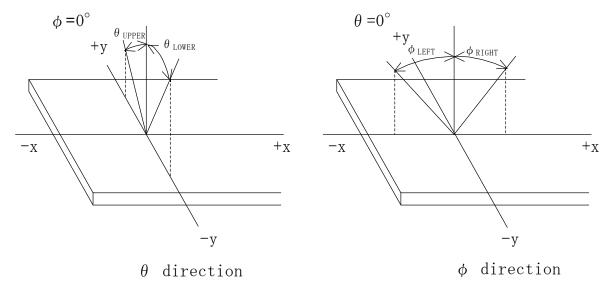
6. Optical characteristics

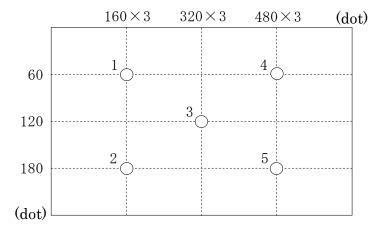

Measuring spot = ϕ 6.0mm, Temp. = 25°C

					0 1		1	
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	
D 4	Rise	Τr	$\theta = \phi = 0$ °	-	18	-	ms	
Response time	Down	τd	$\theta = \phi = 0$ °	-	12	-	ms	
		θ upper		-	85	-	1	
77 1		θ LOWER	CR≧10	-	85	-	deg.	
Viewing angle r	ange	ϕ LEFT	CK≦10	-	85	-	1	
		φ right		-	85	-	deg.	
Contrast ratio		CR	$\theta = \phi = 0$ °	300	500	-	-	
Brightness		L	IF=15mA/Line	350	500	-	cd/m²	
	D . 1	X	$\theta = \phi = 0^{\circ}$	0.540	0.590	0.640		
Red		У	$\theta - \phi = 0$	0.300	0.350	0.400		
Chromaticity coordinates	C	X	$\theta = \phi = 0^{\circ}$	0.285	0.335	0.385		
	icity Green y	У	$\theta - \phi = 0$	0.530	0.580	0.630		
	Dl	X	$\theta = \phi = 0^{\circ}$	0.110	0.160	0.210	-	
	Blue	У	$\sigma - \phi - 0$	0.070	0.120	0.170		
	Wilsia	X	$\theta = \phi = 0^{\circ}$	0.255	0.305	0.355		
	White	У	$\theta - \phi - 0$	0.275	0.325	0.375		

6-1. Definition of contrast ratio

$$\label{eq:cross-cross-contrast} \text{CR(Contrast ratio)} \ = \ \frac{\text{Brightness with all pixels "White"}}{\text{Brightness with all pixels "Black"}}$$


6-2. Definition of response time



Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	5

6-3. Definition of viewing angle

6-4. Brightness measuring points

- 1) Rating is defined on the average in the viewing area. (measured point $1\sim5$)
- 2) Measured 5 minutes after the LED is powered on. (Ambient temp. = 25°C)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	6

7. Interface signals

7-1. LCD

No.	Symbol	Description	Note
1	GNDB	GND for LED backlight	
2	GNDB	GND for LED backlight	
3	GNDB	GND for LED backlight	
4	VBRT	Brightness adjust voltage (0V[max]~2.8V[min])	
5	BLEN	Backlight ON-OFF (H:ON, L:OFF)	
6	$V_{\rm IN} B$	Power supply for LED backlight	
7	$V_{\mathrm{IN}}\mathrm{B}$	Power supply for LED backlight	
8	$V_{\mathrm{IN}}\mathrm{B}$	Power supply for LED backlight	
9	NC	NC	
10	NC	NC	
11	$V_{ m DD}$	+3.3V power supply	
12	$V_{ m DD}$	+3.3V power supply	
13	GND	GND	
14	GND	GND	
15	RxIN0-	LVDS receiver signal CH0(-)	LVDS
16	RxIN0+	LVDS receiver signal CH0(+)	LVDS
17	GND	GND	
18	RxIN1-	LVDS receiver signal CH1(-)	LVDS
19	RxIN1+	LVDS receiver signal CH1(+)	LVDS
20	GND	GND	
21	RxIN2-	LVDS receiver signal CH2(-)	LVDS
22	RxIN2+	LVDS receiver signal CH2(+)	LVDS
23	GND	GND	
24	RxCKIN-	LVDS receiver signal CK(-)	LVDS
25	RxCKIN+	LVDS receiver signal CK(+)	LVDS
26	GND	GND	
27	NC	NC	
28	NC	NC	
29	GND	GND	
30	SC	Scan direction control (GND or Open: Normal, High: Reverse)	1)

LCD connector : MDF76GW-30S-1H(55) (HIROSE)
Matching connector : MDF76-30P-1C (HIROSE)

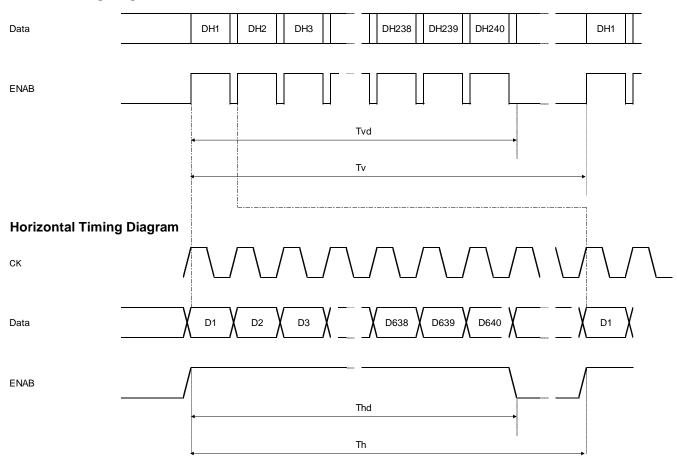
LVDS receiver : BU90R104(ROHM)

Matching LVDS transmitter : BU8254KVT(ROHM) or compatible

1) Scanning

SC: GND or Open SC: High

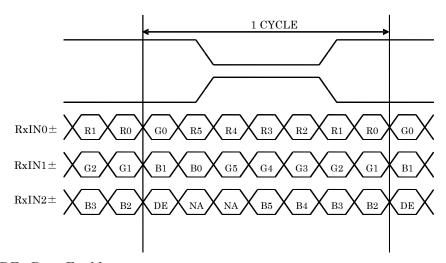
Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	7

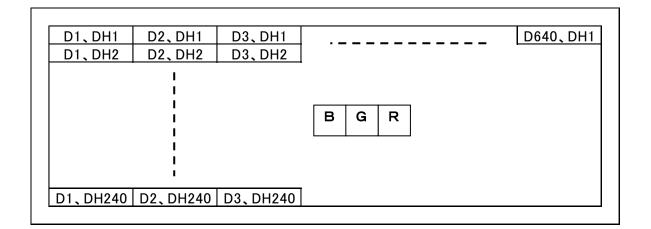

8. Input timing characteristics

8-1. Timing characteristics

	Item	Symbol	Min.	Typ.	Max.	Unit	Note
Clock (CK)	Frequency	1/Tc	11.58	12.85	14.16	MHz	
	Horizontal Period	Th	766	816	866	Тс	
	norizontal Period		54.1	63.5	ı	μ s	1)
Enable signal (DE)	Horizontal display period	Thd		640		Тс	
(DE)	Vertical Period	Tv	250	262	320	Th	
	Vertical display period	Tvd		240		Th	
Refresh rate		fv	50	60	70	$_{ m Hz}$	2)

- 1) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.
- 2) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur.(fv=1/Tv)
- 3) CK count of each Horizontal Scanning Time should be always the same. Vertical invalid data period should be "n" × "Horizontal Scanning Time". (n: integer) Frame period should be always the same.


Vertical Timing Diagram


Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	8

8-2. Data 8-2-1. 6bit Input

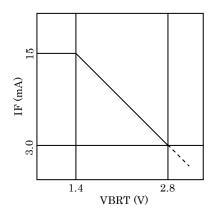
DE : Data Enable NA : Not Applicable

8-3. Input Data Signals and Display position on the screen

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	9

9. Backlight characteristics

Temp.= 25° C


Item	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	$ m V_{IN}B$	3.0	-	5.5	V	Ta=-20∼70°C
ON-OFF (H)	BLEN	$0.8 { m V_{IN} B}$	-	$ m V_{IN}B$	V	-
ON-OFF (L)	DLEN	0.0	-	$0.2 \mathrm{V_{IN}B}$	V	-
LED forward current	112	14	15	16	A	VBRT=0∼1.4V
1) 2)	IF	2.8	3.0	3.2	mA	VBRT=2.8V
Caralananat	T D	-	350	450	Δ	$V_{\rm IN}B$ =3.3V, IF=15mA
Supply current	$I_{IN}B$	-	220	290	mA	$V_{\rm IN}B$ =5.0V, IF=15mA
Operating life 3) 4)	Т	-	40,000	-	h	IF=15mA, Ta=25℃

- 1) For each LED.
- 2) A forward current below 5.0mA may reduce the brightness uniformity of the LED backlight. This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.
- 3) When brightness decrease 50% of minimum brightness.

 The average life of a LED will decrease when the LCD is operating at higher temperatures.
- 4) Life time is estimated data. (Condition: IF=15mA, Ta=25°C in chamber).
- 5) When you start-up, please charge in sequence of $V_{IN}B$ ->BLEN, or VBRT. When you shut-down, please stop in sequence of BLEN and/or VBRT-> $V_{IN}B$.
- 6) Please do not connect the other than our backlight to this output connector on the PCB.
- 7) In case V_{DD} and V_{IN}B are supplied by a single power source, V_{DD} & V_{IN}B, and GND & GNDB are connected directly and separately from the output on the power source. If the common wire are used for V_{DD} & V_{IN}B, and for GND & GNDB, and are split near the PCB, and connect to each LCD driving circuit and backlight driving circuit, a flicker might be occurred due to a ripple between the both circuit.

8) VBRT-IF characteristics

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	11

10. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

No1. - No5. above indicate

- 1. Year code
- 2. Month code
- 3. Date
- 4. Version Number
- 5. Country of origin (Japan or China)

	Year	2016	2017	2018	2019	2020	2021
Ī	Code	6	7	8	9	0	1

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	X	Y	Z

11. Warranty

11-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

11-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	12

12. Precautions for use

12-1. Installation of the LCD

- 1) A transparent protection plate shall be added to protect the LCD and its polarizer
- 2) The LCD shall be installed so that there is no pressure on the LSI chips.
- 3) The LCD shall be installed flat, without twisting or bending.
- 4) Please design the housing window so that its edges are between the active area and the effective area of the LCD screen.
- 5) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

12-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

12-3. LCD operation

1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.

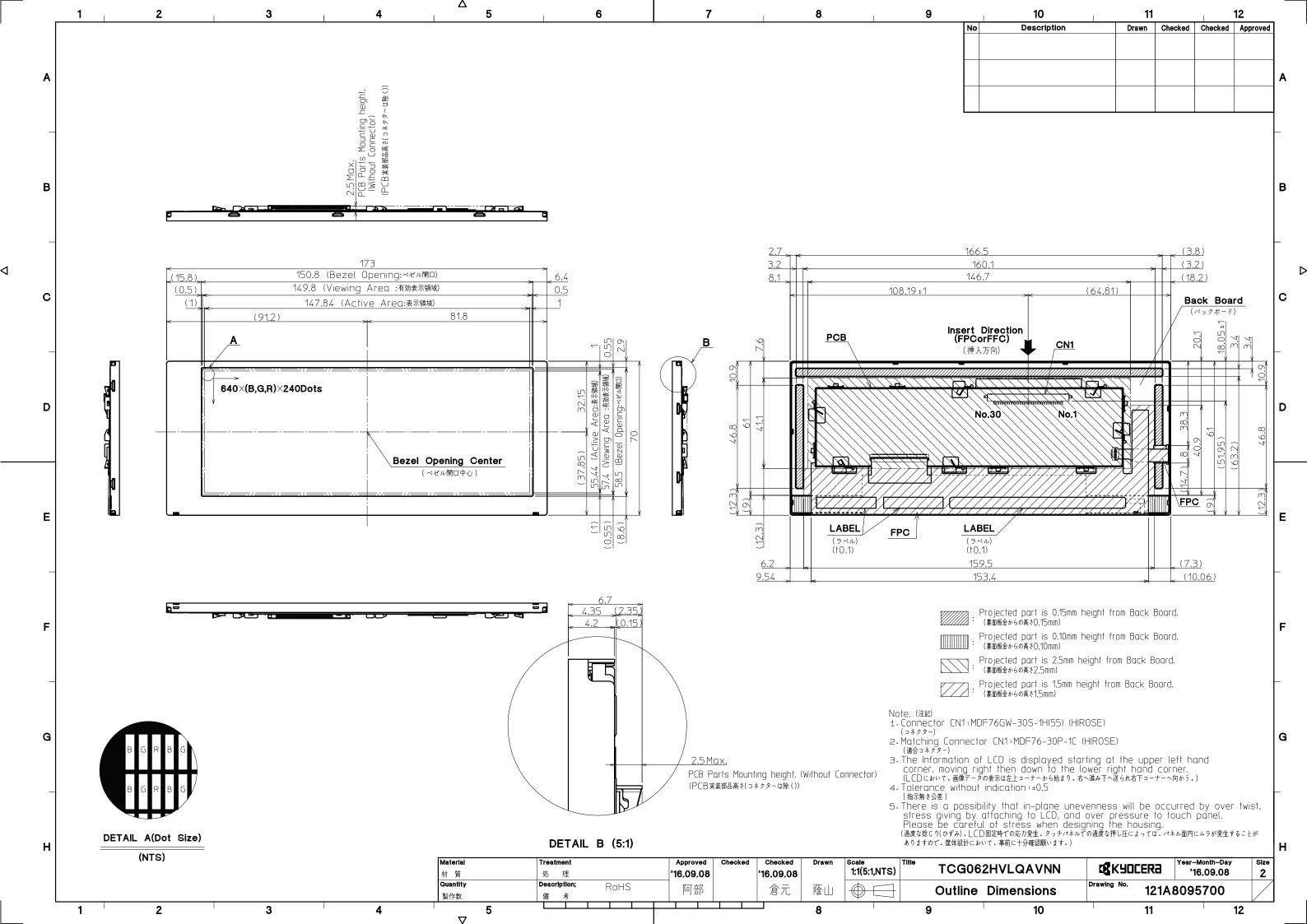
12-4. Storage

- The LCD shall be stored within the temperature and humidity limits specified.
 Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- Always store the LCD so that it is free from external pressure onto it.

12-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not disassemble LCD because it will result in damage.
- 7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1DEY71-00	TCG062HVLQAVNN-GN20	13


13. Reliability test data

Test item	Test condition	Test time	Jud	gement
High temp. atmosphere	S 1 S(1)*(:		Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-30°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	40°C 90% RH	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	10cycles	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. operation	70°C	500h	Display function Display quality Current consumption	: No defect : No defect : No defect

- 1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
- 2) The LCD is tested in circumstances in which there is no condensation.
- 3) The reliability test is not an out-going inspection.
- 4) The result of the reliability test is for your reference purpose only.

 The reliability test is conducted only to examine the LCD's capability.

Spec No.	TQ3C-8EAF0-E2DEY71-00
Date	September 9, 2016

KYOCERA INSPECTION STANDARD

TYPE: TCG062HVLQAVNN-GN20

KYOCERA DISPLAY CORPORATION

Original	Designed by : Engineering dept.			Confirmed by : QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
September 9, 2016	M. Koyama	Y. Yamazaki	G Matrismoto	O. Sato	1. Hamas

Spec No.	Part No.	Page
TQ3C-8EAF0-E2DEY71-00	TCG062HVLQAVNN-GN20	-

Revision record

Date		Designed by : Engineering dept. Confirmed by : Conf		: QA dept.			
	Date	Prepa		Checked	Approved	Checked	Approved
<u> </u>							
Rev.No.	Date	Page			Descripti	ons	

Spec No.	Part No.	Page
TQ3C-8EAF0-E2DEY71-00	TCG062HVLQAVNN-GN20	1

Visuals specification

1) Note

			Note				
General	 Customer identified anomalies not defined within this inspection standard shall be reviewed by Kyocera, and an additional standard shall be determined by mutual consent. This inspection standard about the image quality shall be applied to any defect within the effective active area and shall not be applicable to outside of the area. 						
			be applicable to outside of the area.				
		on conditions	· MOO I				
	Lumina		: 500 Lux min. : 300 mm.				
	Temper	ion distance	· 500 mm. ∶ 25 ± 5℃				
	Direction		Directly above				
Definition of	Dot defect	Bright dot defect	The dot is constantly "on" when power applied to the				
inspection	Dot delect	Bright dot defect	LCD, even when all "Black" data sent to the screen.				
item			Inspection tool: 5% Transparency neutral density filter.				
			Count dot: If the dot is visible through the filter.				
			Don't count dot: If the dot is not visible through the				
			filter. RGBRGBRGB There is an electrode in the middle of the dot and one dot is shown in the left drawing. RGBRGBRGB RGBRGB Adot drawing>				
		Black dot defect	The dot is constantly "off" when power applied to the				
			LCD, even when all "White" data sent to the screen.				
			Similar size compared to bright dot.				
		White dot	Pixel works electrically, however, circular/foreign				
		(Circular/foreign	particle makes dot appear to be "on" even when all				
		particle)	"Black" data is sent to the screen.				
		Adjacent dot	Adjacent dot defect is defined as two or more bright dot defects or black dot defects.				
			R G B R G B R G B R G B R G B R G B R G B R G B R G B				
	External	Bubble, Scratch,	Visible operating (all pixels "Black" or "White") and non				
	inspection	Foreign particle	operating.				
		(Polarizer, Cell, Backlight)					
		Appearance inspection	Does not satisfy the value at the spec.				
	Definition	Definition of cir	rcle size Definition of linear size				
	of size	d = (a + b))/2				

Spec No.	Part No.	Page
TQ3C-8EAF0-E2DEY71-00	TCG062HVLQAVNN-GN20	2

2) Standard

2) Standa		т.	,		T 1	. 1	1	
			ion item	Judgement standard				
Defect	Dot	Bright dot defect		Acceptable number : 4				
(in LCD	defect			Bright dot spacing : 5 mm			or more	
glass)		Black dot defect		Acceptable number : 5				
				Black dot spacing : 5 mm or more			or more	
		2 dot join	Bright dot defect	Acceptable number		: 2		
			Black dot					
			defect	Acceptable number		: 3		
		3 or more	dots join	Acceptable number : 0				
		Total dot defects		Acceptable number : 5 Max		Σ.		
	Others	White dot, Dark dot						
		(Circle)		Size (mm)		Acceptable number		
				d ≦			(Neglected)	
				0.2 < d ≦	0.4		5	
				0.4 < d ≦	0.5		3	
				0.5 < d			0	
Extornal	inspection	Polarizer (Scratch)					
(Defect or	_	1 Olarizer (DCI atCII/	Width (mm)	Length (mm)	Acceptable number	
Polarizer or				$W \leq 0.1$	Length (111111/	(Neglected)	
between Polarizer					I, ≤	≦ 5.0	(Neglected)	
and LCD glass)					5.0 < L	_ 0.0	0	
and LCD glass)				0.3 < W	_		0	
		Polarizer (Rubblo)					
		Totalizer (Bussie)		Size (mm	.)	Λ α	antable number	
				$d \leq 0.2$		Acceptable number (Neglected)		
				$0.2 < d \le 0.3$		5		
				$0.3 < d \le 0.5$		3		
				0.5 < d		0		
		Foreign pa	rticle			•		
		(Circular shape)		Size (mm)	Δα	ceptable number	
		(Official shape)		$d \leq 0.2$		(Neglected)		
				$0.2 < d \le 0.4$		5		
				$0.4 < d \le 0.5$		3		
				0.5 < d		0		
		E					_	
		Foreign particle (Linear shape) Scratch		Width (mm) I		(mm) A coort-1-11		
				$\begin{array}{c} \text{Width (mm)} \\ \text{W} \leq 0.03 \end{array}$	Length (mm)		Acceptable number (Neglected)	
				vv ≥ 0.03		≦ 2.0	(Neglected)	
				$0.03 < W \le 0.1$	2.0 < L		(iveglected)	
				11 3.00 1 11 - 0.1			U	
					4.0 < 1.		0	
				0.1 < W	4.0 < L		0 (According to	

