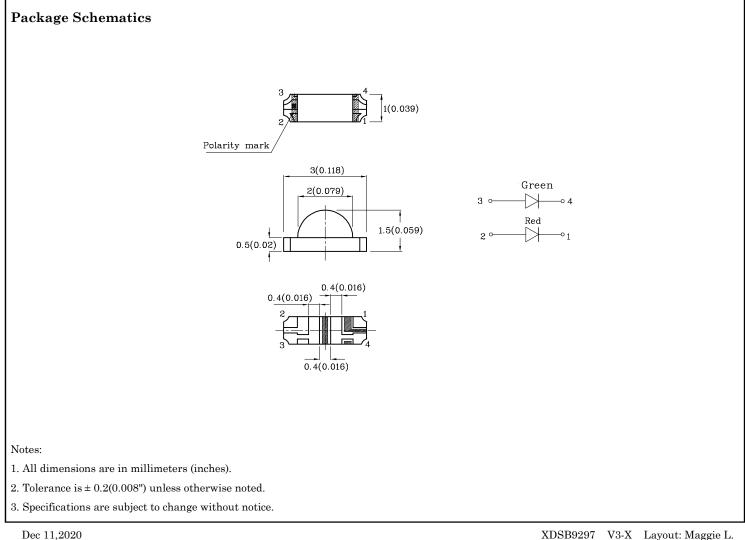


3.0 x 1.0 mm High Temperature Series

Features

- 3.0x1.0x1.5mm right angle SMD LED
- Ideal for indication on hand held products
- Low current operation
- Standard Package: 2,000pcs/ Reel
- MSL (Moisture Sensitivity Level): 3
- Halogen-free
- RoHS compliant



ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICES

Applications

- Backlighting for tell-tale indicators
- Dashboard lighting
- Interior lighting (footwell, dome light, accent lighting, etc.)
- Exterior lighting (turn signals, side markers, CHMSL, etc.)
- Signs and signals
- Various applications requiring high temperature rating

XDSB9297 V3-X Layout: Maggie L.

Part Number: XZMDKVGX56W-HTA

3.0 x 1.0 mm High Temperature Series

Part Number	Emitting Color	Emitting Material	Luminous Intensity CIE127-2007* (I _F =20mA) mcd			Lens-color	Viewing Angle 20 1/2
			Code.	min.	max.		
			Ν	120	200		
			Р	200	300	-	
	D d	AlGaInP	Q	300	400	_	
	Red	AlGainP	H*	55*	80*		
			M*	80*	120*	-	
			N*	120*	200*	Watan Class	1500
XZMDKVGX56W-HTA			F	20	40	- water Clear	150°
			G	40	55	-	
	C		Н	55	80	Water Clear	
	Green	AlGaInP	F*	20*	40*		
			G*	40*	55*		
			H*	55*	80*		

Note:

1.01/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.

*Luminous intensity value is in accordance with CIE127-2007 standards.

Absolute Maximum Ratings at Ta=25°C

	a l l	Va	TT •4		
Parameter	Symbol	Red	Green	Unit	
Power dissipation	PD	75	75	mW	
Reverse Voltage	VR	5	5	V	
Junction temperature	TJ	115	115	°C	
Operating Temperature	Тор	-40 Te	°C		
Storage Temperature	Tstg	-40 Te	°C		
DC Forward Current	IF	30	30	mA	
Peak Forward Current [2]	IFM	185	150	mA	
Electrostatic Discharge Threshold (HBM)	3000 3000		V		
Thermal Resistance (Junction/ambient) [1]	Rth j-a	500	650	°C/W	
Thermal Resistance (Junction / Solder point) [1]	Rth j-s	400	550	°C/W	

Notes:

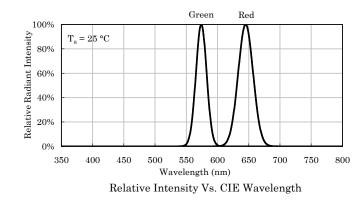
1. Rth(j-a) Results from mounting on PC board FR4 (pad size $\geq\!16$ mm² per pad),

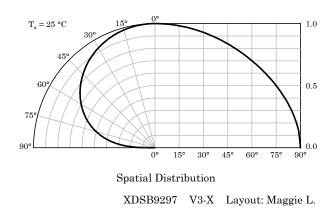
2. 1/10 Duty Cycle, 0.1ms Pulse Width.

3. A Relative Humidity between 40% and 60% is recommended in ESD-protected work areas to reduce static build up during assembly process (Reference JEDEC/JESD625-A and JEDEC/J-STD-033)

3.0 x 1.0 mm High Temperature Series

Electrical / Optical Characteristics at Ta=25°C

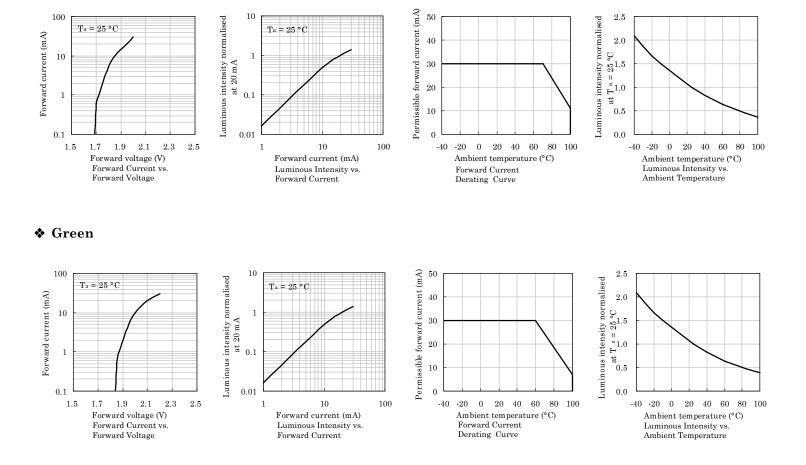

	G 1 1	C1 ·	Value				Unit
Parameter	Symbol	Chip	Code.	Min.	Тур.	Max.	Unit
Wavelength at peak emission CIE127-2007* IF = $20mA$	λpeak	Red Green	-	-	645* 574*		nm
		Red	-	620*	-	640*	
Deminent Wenden the CIP107 2007* In= 20 A	λdom [1] $\frac{4^{*}}{\text{Green}} \frac{565^{*}}{5^{*}} - \frac{-567^{*}}{567^{*}} - \frac{-567^{*}}{567^{$	-	567*				
Dominant Wavelength CIE127-2007* $IF = 20mA$		Green	5*	567*	-	569*	nm
			6*	569*	-	571*	
Spectral bandwidth at 50% Φ REL MAX IF = 20mA	Δλ	Red Green	-	-	28 20	-	nm
Forward Voltage IF = 20mA	VF [2]	Red Green	-	-	$1.95 \\ 2.1$	$2.5 \\ 2.5$	V
Reverse Current (VR = 5V)	IR	Red Green	-	-	-	10 10	μΑ
Temperature coefficient of λ peak IF = 20mA, -10°C \leq T \leq 100°C	ТСдреак	Red Green	-	-	$\begin{array}{c} 0.14\\ 0.12\end{array}$	-	nm/°C
Temperature coefficient of λ dom IF = 20mA, -10°C \leq T \leq 100°C	TCλdom	Red Green	-	-	$\begin{array}{c} 0.05\\ 0.08\end{array}$	-	nm/°C
Temperature coefficient of VF $IF = 20 \text{mA}, -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$	TCv	Red Green	-	-	-1.9 -1.9	-	mV/°C

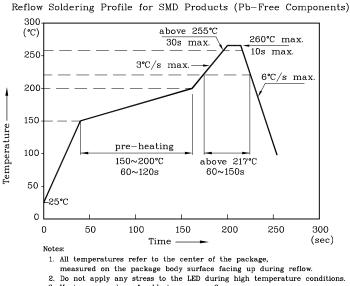

Notes:

1. Wavelength : + / -1nm.

2. Forward Voltage: +/-0.1V.

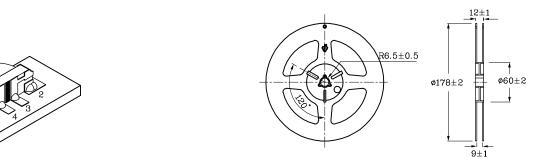
 \ast Wavelength value is in accordance with CIE127-2007 standards.

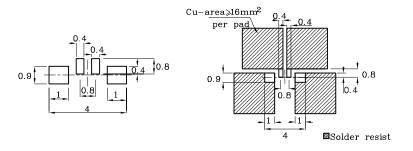


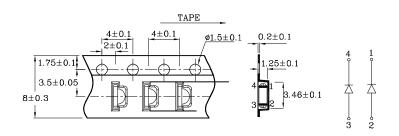


 $3.0 \ge 1.0$ mm High Temperature Series

✤ Red


LED is recommended for reflow soldering and soldering profile is shown below.


3. Maximum number of soldering passes: 2


- The device has a single mounting surface. The device must be mounted according to the specifications.
- Reel Dimension (Units : mm)

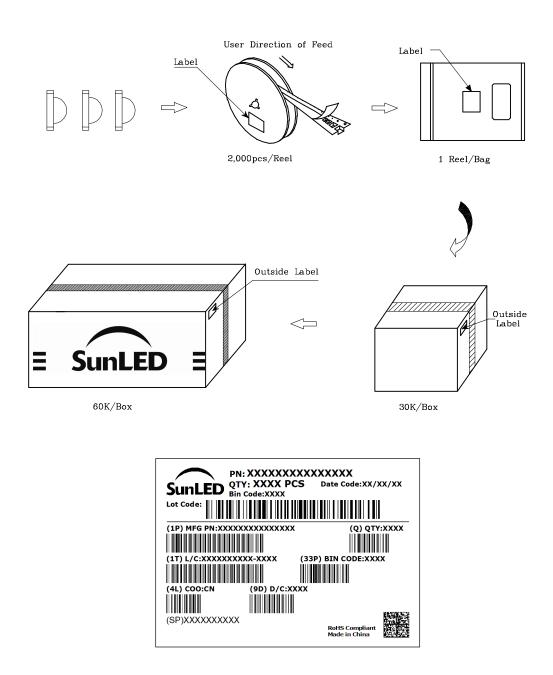
Recommended Soldering Pattern (Units : mm; Tolerance: ± 0.1)

Tape Specification (Units : mm)

Remarks:

If special sorting is required (e.g. binning based on forward voltage, Luminous intensity / luminous flux, or wavelength), the typical accuracy of the sorting process is as follows:

- 1. Wavelength: +/-1nm
- 2. Luminous intensity / luminous flux: +/-15%


3. Forward Voltage: +/-0.1V $\,$

Note: Accuracy may depend on the sorting parameters.

3.0 x 1.0 mm High Temperature Series

PACKING & LABEL SPECIFICATIONS

TERMS OF USE

- 1. Data presented in this document reflect statistical figures and should be treated as technical reference only.
- 2. Contents within this document are subject to improvement and enhancement changes without notice.
- 3. The product(s) in this document are designed to be operated within the electrical and environmental specifications indicated on the datasheet.
- User accepts full risk and responsibility when operating the product(s) beyond their intended specifications.
- 4. The product(s) described in this document are intended for electronic applications in which a person's life is not reliant upon the LED. Please
- consult with a SunLED representative for special applications where the LED may have a direct impact on a person's life.
- 5. The contents within this document may not be altered without prior consent by SunLED.
- $6. \ Additional \ technical \ notes \ are \ available \ at \ \underline{https://www.SunLEDusa.com/TechnicalNotes.asp}$

Reliability Test Items And Conditions

The reliability of products shall be satisfied with items listed below

Lot Tolerance Percent Defective (LTPD): 10%

No.	Test Item	Standards	Tost Condition		Number of Damaged
1	Continuous operating test	tinuous operating test -		1,000 h	0 / 22
2	High Temp. operating test	EIAJ ED-4701/100(101)	T_a = 100°C, I_F = maximum rated current *	1,000 h	0 / 22
3	Low Temp. operating test	-	T_a = -40°C, I _F = maximum rated current *	1,000 h	0 / 22
4	High temp. storage test	EIAJ ED-4701/100(201)	T_a = maximum rated storage temperature	1,000 h	0 / 22
5	Low temp. storage test	EIAJ ED-4701/100(202)	$T_a = -40$ °C	1,000 h	0 / 22
6	High temp. & humidity storage test	EIAJ ED-4701/100(103)	$T_a = 60^{\circ}C, RH = 90\%$	1,000 h	0 / 22
7	High temp. & humidity operating test	EIAJ ED-4701/100(102)	$T_a = 60^{\circ}C, RH = 90\%$ I _F = maximum rated current *	1,000 h	0 / 22
8	Soldering reliability test	EIAJ ED-4701/100(301)	Moisture soak: 30°C, 70% RH, 72h Preheat: 150~180°C (120s max.) Soldering temp: 260°C(10s)	2 times	0 / 18
9	Thermal shock operating test	-	$\begin{split} T_a &= -40^{\circ} C(15 \text{min}) \sim 100^{\circ} C(15 \text{min}) \\ I_F &= \text{derated current at } 100^{\circ} C \end{split}$	1,000 cycles	0 / 22
10	Thermal shock test	-	$T_a = -40^{\circ}C(15min) \sim maximum rated$ Storage temperature(15min)	1,000 cycles	0 / 22
11	Electric Static Discharge (ESD)	EIAJ ED-4701/100(304)	$C = 100 pF$, $R2 = 1.5 K\Omega$ V = 3000V (Red) V=3000V (Green)	Once each Polarity	0 / 22
12	Vibration test	-	$a = 196 \text{m/s}^2$, f = 100~2KHz, t = 48min for all xyz axes	4 times	0 / 22

* : Refer to forward current vs. derating curve diagram

Criteria for Judging Damage

Items	Symbols	Conditions	Failure Criteria
luminous Intensity	lv	IF = 20mA	Testing Min. Value <spec.min.value 0.5<="" td="" x=""></spec.min.value>
Forward Voltage	VF	IF = 20mA	Testing Max. Value ≥Spec.Max.Value x 1.2
Reverse Current	IR	VR = Maximum Rated Reverse Voltage	Testing Max. Value ≥Spec.Max.Value x 2.5
High temp. storage test	-	-	Occurrence of notable decoloration, deformation and cracking